Hidden Markov latent variable models with multivariate longitudinal data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Longitudinal Data Analysis with Mixed Effects Hidden Markov Models

Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random e...

متن کامل

Latent-variable models for longitudinal data with bivariate ordinal outcomes.

We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from th...

متن کامل

Multivariate State Hidden Markov Models for Mark-Recapture Data

Abstract. State-based Cormack-Jolly-Seber (CJS) models have become an often used method for assessing states or conditions of free-ranging animals through time. Although originally envisioned to account for differences in survival and observation processes when animals are moving though various geographical strata, the model has evolved to model vital rates in di↵erent life-history or diseased ...

متن کامل

Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting

Hidden Markov models (HMMs) are a useful tool for capturing the behavior of overdispersed, autocorrelated data. These models have been applied to many different problems, including speech recognition, precipitation modeling, and gene finding and profiling. Typically, HMMs are applied to individual stochastic processes; HMMs for simultaneously modeling multiple processes—as in the longitudinal d...

متن کامل

Hidden Markov Models for Longitudinal Comparisons

Medical researchers interested in temporal, multivariate measurements of complex diseases have recently begun developing health state models which divide the space of patient characteristics into medically distinct clusters. The current state of the art in health services research uses k-means clustering to form the health states and a first order Markov chain to describe transitions between th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrics

سال: 2016

ISSN: 0006-341X

DOI: 10.1111/biom.12536