Hidden Markov latent variable models with multivariate longitudinal data
نویسندگان
چکیده
منابع مشابه
Multivariate Longitudinal Data Analysis with Mixed Effects Hidden Markov Models
Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random e...
متن کاملLatent-variable models for longitudinal data with bivariate ordinal outcomes.
We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from th...
متن کاملMultivariate State Hidden Markov Models for Mark-Recapture Data
Abstract. State-based Cormack-Jolly-Seber (CJS) models have become an often used method for assessing states or conditions of free-ranging animals through time. Although originally envisioned to account for differences in survival and observation processes when animals are moving though various geographical strata, the model has evolved to model vital rates in di↵erent life-history or diseased ...
متن کاملMixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting
Hidden Markov models (HMMs) are a useful tool for capturing the behavior of overdispersed, autocorrelated data. These models have been applied to many different problems, including speech recognition, precipitation modeling, and gene finding and profiling. Typically, HMMs are applied to individual stochastic processes; HMMs for simultaneously modeling multiple processes—as in the longitudinal d...
متن کاملHidden Markov Models for Longitudinal Comparisons
Medical researchers interested in temporal, multivariate measurements of complex diseases have recently begun developing health state models which divide the space of patient characteristics into medically distinct clusters. The current state of the art in health services research uses k-means clustering to form the health states and a first order Markov chain to describe transitions between th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2016
ISSN: 0006-341X
DOI: 10.1111/biom.12536